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ABSTRACT
Cognitive diagnosis models (CDMs) are a popular tool for
assessing students’ mastery of sets of skills [5]. Given a set of
K skills tested on an assessment, students are classified into
one of 2K latent skill set profiles that represent whether they
have mastered each skill or not. Traditional approaches to
estimating these profiles are computationally intensive and
become infeasible on large datasets [5]. Instead, proxy skill
estimates can be generated from the observed responses and
then clustered, and these clusters can be assigned to differ-
ent profiles [1]. Building on the work of [7], we consider how
to optimally perform this clustering when not all 2K profiles
are possible, e.g. because of hierarchical relationships among
the skills, and when not all possible profiles are present in
the population. We consider how many clusters to extract
from a dendrogram generated by hierarchical agglomerative
clustering, and we compare this approach to traditional k-
means and to the empty k-means algorithm described in [7],
using a variety of starting centers. We also use simulated
student responses to perform semisupervised clustering, un-
der both correctly specified and misspecified models.
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1. INTRODUCTION
Cognitive diagnosis models (CDMs) provide a means of es-
timating which skills students have and have not mastered.
Given N students, K skills, and J items, let Y be an N ×J
binary item response matrix, where Yij represents whether
student i got item j correct or not. (While missing values
can exist, they are outside the scope of this work.) CDMs
also utilize a binary J × K Q-matrix, with each entry qj,k
indicating whether item j utilizes or requires skill k. The
Q-matrix is constructed by domain experts and is typically
assumed to be correct. The goal is the estimation of a la-
tent binary vector αi = (αi1, . . . αiK) for i = 1, 2, . . . N ,

representing each student’s mastery of the skills.

CDMs are commonly estimated using maximum likelihood
methods using the Expectation Maximization (EM) algo-
rithm, or in a Bayesian setting using Markov Chain Monte
Carlo (MCMC) simulation. However, these approaches are
computationally intensive and may be infeasible given large
numbers of students, items, or skills, or for particularly com-
plex models [5]

As an alternative, [1] suggest using clustering methods such
as k-means or hierarchical agglomerative clustering (HC) to
group students into latent classes. The item response ma-
trix and the Q-matrix are used to compute a K-dimensional
vector for each student, representing performance on items
requiring each of the K skills. Those vectors are then clus-
tered to estimate the 2K profiles. Under certain conditions,
[1] show that HC is a consistent procedure, correctly parti-
tioning students with probability converging to 1. They also
show that k-means performs well in simulations.

Both HC and k-means require choosing the number of clus-
ters, and the theoretical consistency of HC requires that
each of the 2K profiles is sampled with probability greater
than 0. Since the number of profiles is exponential in K,
it is likely or even inevitable that not all 2K profiles will be
present in the sample. [7] present a variant of k-means called
empty k-means in which the number of clusters is not speci-
fied in advance and anywhere between 1 and 2K clusters are
returned. Their method outperforms HC and conventional
k-means when fewer than 2K profiles are present.

Typically there is no way to know which profiles are present
in a population, but in some cases it is possible to exclude
some profiles. If skills are hierarchically arranged, then stu-
dents cannot master a “child” skill without mastering its
“parent” skill. For example, if addition is prerequisite to
multiplication, then a profile (0, 1) representing mastery of
addition without mastery of multiplication is not possible,
but profiles (0, 0), (1, 0), and (1, 1) are possible. [8] esti-
mates CDMs with hierarchical skill relationships by preclud-
ing profiles that are not possible under the hierarchy and
then estimating model parameters using maximum marginal
likelihood. Although this approach improves model fit and
item parameter estimation in several simulations [8], it is
expected that it would become computationally intractable
as the number of skills, items, and/or students grew.



We extend previous work by investigating the use of clus-
tering methods in cases when not all profiles are present
and there is information about which profiles are absent, for
example because of hierarchical skill relationships.

2. METHOD
We use simulation to compare several clustering methods
when fewer than 2K profiles are present, potentially given
some skill hierarchy. In this section, we describe the deriva-
tion of the capability scores, the hierarchies we examined,
and the clustering methods we used.

2.1 Sum and capability scores
Recall the response vectors Yi and Q-matrix defined in Sec-
tion 1. For clustering, [1] define, for each student, a vector

Wi = (Wi1,Wi2, . . . ,WiK), where Wik =
∑J
j=1 Yijqjk is the

sum score for that student for skill k. Each sum score rep-
resents the number of items a student got right out of items
that require skill k. The vectors Wi therefore lie in a hy-
perrectangle touching the origin, with the length of side k
equal to the number of items that require skill k.

Here, we follow [7] and divide eachWik by k to produce capa-
bility scores, which are constrained to lie in the k-dimensional
unit hypercube. This is intuitively appealing, since the
scores serve as a proxy for the latent skill profiles, which
lie at the vertices of this hypercube.

2.2 Skill hierarchies
In the CDM literature, it is typical to assume that all 2K

profiles are possible, which is tantamount to assuming that
skills can be mastered in any order. This assumption is often
not realistic, however, as some skills may need to be mas-
tered before others [6]. Skill hierarchies can be represented
by Directed Acyclic Graphs (DAGs), with edges indicating
prerequisite relationships. Although any DAG is possible
in principle, we compare four common types of skill hierar-
chies: linear, convergent, divergent, and unstructured. Fig-
ure 1, taken from Figure 1 in [6], shows examples of these
four types for a set of six skills. We also examine the case
of a null hierarchy, i.e. when the skills can be learned in
any order. Let Lh be the number of possible possible pro-
files under a hierarchy h. With six skills, Lnull = 26 = 64.
The other hierarchies admit far fewer profiles: Llinear = 7,
Lconvergent = 12, Ldivergent = 16, and Lunstructured = 33.

2.3 Clustering methods
2.3.1 Hierarchical agglomerative clustering (HC)

This method starts with each data point in its own cluster
and iteratively merges the closest clusters (according to a
specified distance function) until all the data points are in
a single cluster. The resulting dendrogram can then be cut
to produce a specified number of clusters between 1 and N .
We used complete linkage as the distance function and cut
the dendrogram at the point representing the largest merge
distance. If this produced more than Lh clusters, then we
instead cut the dendrogram so as to produce Lh clusters.

2.3.2 k-means
We use traditional k-means, with the number of clusters set
to Lh ([2]) via kmeans() in R with 5 random restarts. This

Figure 1: Four types of skill hierarchies: (a) linear,
(b) convergent, (c) divergent, and (d) unstructured.

algorithm generates an error when clusters are empty. As
such, we use only random starting center observations.

2.3.3 Empty k-means
The algorithm in [7], set to allow up to Lh clusters. We select
starting centers by (1) random sampling, (2) the rescaling
method described in [7], and (3) generating “pseudocenters”
from an assumed model. The pseudocenters rely on the
intuition that if the true data-generating model were known,
then it could be used to select appropriate starting centers,
for example by finding the expected capability score vector
under each possible profile. As an approximation to this,
the pseudocenters are generated by simulating data under a
particular model for each possible profile and then taking the
mean of each profile’s capability scores. The model used to
generate the pseudocenters may be different from the model
used to generate the to-be-clustered data; we consider the
issue of model misspecification below.

2.3.4 Semisupervised clustering
As with the pseudocenters, pseudodata is generated under
a model for each possible profile; then semisupervised clus-
tering is performed using the pseudodata and the real data.
We used the lcvqe() function from the conclust package
in R [3]. The LCVQE algorithm is a k-means variant that
clusters labeled and unlabeled data points while attempting
to preserve the clustering implied by the labels. This tech-
nique initially produces Lh clusters, but some of those clus-
ters may end up containing only the labeled data, in which
case they are discarded and a smaller number of clusters of
the (originally) unlabeled data remain.

3. SIMULATION RESULTS
3.1 Framework
The numbers of skills K, items J , and students N were 6,
30, and 250, respectively. We sampled a single Q matrix of
9 single-skill items (30%), 18 two-skill items (60%), and 3
three-skill items (10%). For each skill hierarchy h, subsets
of profiles of size 3, 4, . . . , Lh were selected. For the linear,
convergent, and divergent hierarchies, the subsets consisted
of rows 1-3, 1-4, . . ., 1-Lh from the matrices in [8] repre-



senting the possible profiles. For the unstructured and null
hierarchies, the subsets were sampled at random.

Item responses were generated from two CDMs, a DINA and
a NIDA [5]. The item response functions are:

P (yij = 1|ηij , sj , gj) = (1− sj)ηijg
1−ηij
j (DINA)

P (yij = 1|αi, sk, gk) =

K∏
k=1

[(1− sk)αikg
1−αik
k ]qjk (NIDA)

where αi is the skill set profile, ηij =
∏K
k=1 α

qjk
ik indicates

whether student i has mastered all the skills necessary for
item j, and sj , sk, gj , gk are slip and guess parameters in-
dexed on items and skills, respectively. The slip parameters
represent the probability of responding incorrectly even with
sufficient skills; the guess parameters represent the probabil-
ity of guessing correctly without those skills. The slip and
guess parameters were sampled from a Uniform(0, 0.30) and
a Uniform(0, 0.15) distribution, respectively. Item responses
were converted to capability scores for clustering. Cluster-
ing performance was assessed via the Adjusted Rand Index
(ARI), a measure of agreement between two partitions [4].
(Here, the second partition consisted of the true profile la-
bels). The expected ARI for a pair of random partitions is
0, while identical partitions yield the maximum ARI of 1.

3.2 Results
Figures 2 and 3 shows ARIs for data generated from the
DINA and NIDA, respectively. The x-axes show the pro-
portion of profiles present out of the number Lh that are
possible under each hierarchy. The four “emptyK” methods
refer to empty k-means with four different sets of starting
centers. The “DINA” and “NIDA” suffixes refer to the mod-
els used to generate pseudodata; these models were indepen-
dent of the models used to generate the “real” data.

The DINA and NIDA data show similar results. Empty k-
means with pseudocenters performed the best in nearly ev-
ery case. Surprisingly, this method performed well even un-
der model misspecification, e.g. when a NIDA was used with
an underlying DINA. The hierarchical clustering method
performed moderately well with small numbers of profiles,
but performance dropped off quickly as that number in-
creased. These patterns held even though both k-means
and HC were constrained to a maximum of Lh clusters, a
more favorable scenario than the traditional 2K clusters.

Performance did not increase consistently in the proportion
of profiles, even though the clustering methods were all set
to allow up to Lh clusters, which might be expected to lead
to too many clusters for small profile subsets. This may
reflect the fact that more profiles make the score space more
crowded, which makes it difficult to distinguish clusters.

The ARI fluctuations in the null and unstructured hierar-
chies are likely due to the particular profiles that were sam-
pled. The methods appear to be closely correlated in these
cases, suggesting that some subsets are harder to cluster
than others, probably due to skill estimate attenuation [7].

Semisupervised clustering performed moderately well, but
again, the correctly specified model did not necessarily out-

perform the misspecified model.

4. DISCUSSION AND FUTURE WORK
Previous work has suggested using k-means [1] or empty k-
means [7] to partition students into classes based on their
latent skill set profiles, while [8] used a likelihood-based ap-
proach to estimate CDMs in the presence of skill hierarchies.
We synthesized and extended these lines of research, apply-
ing a range of clustering approaches when skill hierarchies
render some profiles impossible and when not all possible
profiles are present in a sample. A novel approach that com-
bines the empty k-means algorithm with starting centers
generated from pseudodata yielded the best performance,
even when the generating model was misspecified.

In future work, we intend to investigate further how robust
the empty k-means method with pseudocenters is to model
misspecification. Both the DINA and the NIDA are con-
junctive CDMs, so it is possible that performance would de-
grade if they were paired with disjunctive models. We plan
to investigate the fluctuations in the null and unstructured
hierarchy results to understand what kinds of profile sub-
sets are easiest to distinguish. Additionally, we intend to
explore allowing for misspecification of the skill hierarchy,
for example by translating it into a set of soft rather than
hard constraints; and we will consider ways to infer the skill
hierarchy when it is unknown or only partially known.

The pseudodata-based approaches have an advantage in that
they yield not just partitions but profile labels, since the fi-
nal clusters are associated with existing, labeled data points.
With the other methods, labels must be derived by, for ex-
ample, assigning clusters to the nearest licit vertex of the ca-
pability score space. We think this is a promising approach
that merits further investigation.
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Figure 2: ARIs for five hierarchies and four clustering methods, for DINA-generated data
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Figure 3: ARIs for five hierarchies and four clustering methods, for NIDA-generated data


