Clustering Students and Inferring Skill Set Profiles with Skill Hierarchies

Alan Mishler (amishler@stat.cmu.edu), Rebecca Nugent (rnugent@stat.cmu.edu)

Department of Statistics & Data Science, Carnegie Mellon University

Cognitive Diagnosis Models (CDMs)

Class of models used to estimate students’ mastery of target skills in a learning environment.

Parameters

- N students, K skills, J items
- $Q: J \times K$ binary skill coding matrix $Q_{jk} = 1$ if item j requires skill k
- $\alpha_i = (\alpha_{i1}, \ldots, \alpha_{ik}) \in \{0, 1\}^K$: latent skill profile $\alpha_i = 1$ if student i has mastered skill k
- Others, depending on model.

Data

- Y: $N \times J$ binary response matrix $Y_{ij} = 1$ if Student i got item j correct

Typical models

- $P(y_{ij} = 1) = (1 - s_j)^{\eta_i} k_{ij}^{1-\eta_i}$ (DINA)
- $P(y_{ij} = 1) = \prod_{k=1}^{K} (1 - s_k)^{\eta_i} g_{jk}^{1-\eta_i}$ (NIDA)

Estimand

- Skill profile α_i, for student $i = 1, \ldots, N$.

Estimation

- Likelihood-based: consistent but intractable for large K or N
- Pseudo-profiles + clustering $[1, 2]$; fast, consistent under strong assumptions

Typical clustering assumption: All 2^K skill profiles are present $[1]$ or possible $[2]$ in the sample.

Research question: How can we optimally perform clustering when
- Some profiles are known to be impossible?
- Not all possible profiles occur in the sample?

Skill Hierarchies

(a) Linear; (b) Convergent; (c) Divergent; (d) Unstructured $[3]$

- Upstream skills must be learned first.
- Number of possible profiles L_h varies by hierarchy.

Simulations

1. Generate data:
 - 30 items, 6 skills, 250 students
 - Q-matrix: 30-60-10% of items requiring 1, 2, 3 skills
 - Models: DINA and NIDA
 - Hierarchy types: (a)-(d) + unstructured (no hierarchy)
 - Profiles in sample: 0-100% of possible profiles

2. Compute pseudo-profiles (capability scores):
 - For student i, score $W_i = (W_{i1}, W_{i2}, \ldots, W_{ik})$;
 where $W_k = \sum_{j=1}^{J} Y_{ij} Q_{jk}$.

3. Cluster, with L_h clusters
 - Algorithms: (1) Hierarchical clustering (HC) with complete linkage; (2) k-means; (3) empty k-means (up to L_h clusters) $[2]$; (4) semisupervised clustering
 - Starting centers: (1) Random; (2) rescaled $[2]$; (3) pseudocenters (mean capability scores for each possible profile from a separate pseudosample, generated via a DINA or NIDA)

4. Evaluate clusters
 - Adjusted Rand Index (ARI) of best assignment of clusters to profiles.

Results: DINA

Results: NIDA

Future Directions

- Further investigate pseudocenters
- Robust to “misspecification” with other CDMs?
- Investigate fluctuations in null and unstructured hierarchies
- What kinds of profiles are easy to distinguish?
- Soft hierarchical constraints
- Ways to infer skill hierarchy when unknown or partially known